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Abstract. Sensors networks instrument the physical space using motes
that run network embedded programs thus acquiring, processing, storing
and transmitting sensor data. The motes commercially available today
are large, costly and trade performance for flexibility and ease of pro-
gramming. New generations of motes are promising to deliver significant
improvements in terms of power consumption and price — in particular
motes based on System-on-a-chip. The question is how do we compare
mote performance? How to find out which mote is best suited for a given
application? In this paper, we propose a vector-based methodology for
benchmarking mote performance. Our method is based on the hypothe-
sis that mote performance can be expressed as the scalar product of two
vectors, one representing the mote characteristics, and the other repre-
senting the application characteristics. We implemented our approach in
TinyOS 2.0 and we present the details of our implementation as well as
the result of experiments obtained on commercial motes from Sensin-
ode. We give a quantitative comparison of these motes, and predict the
performance of a data acquisition application.

1 Introduction

Sensor networks-based monitoring applications range from simple data gath-
ering, to complex Internet-based information systems. Either way, the physical
space is instrumented with sensors extended with storage, computation and com-
munication capabilities, the so-called motes. Motes run the network embedded
programs that mainly sleep, and occasionally acquire, communicate, store and
process data. In order to increase reliability and reduce complexity, research pro-
totypes [1, 2] as well as commercial systems1 now implement a tiered approach
where motes run simple, standard data acquisition programs while complex ser-
vices are implemented on gateways. These data acquisition programs are either
a black box (Arch Rock), or the straightforward composition of building blocks
such as sample, compress, store, route (Tenet). This approach increases relia-
bility because the generic programs are carefully engineered, and reused across

1 See http://www.archrock.com



deployments. This approach reduces complexity because a system integrator does
not need to write embedded programs to deploy a sensor network application.

Such programs need to be portable to accommodate different types of motes.
First, a program might need to be ported to successive generations of motes.
Indeed, hardware designers continuously strive to develop new motes that are
cheaper, and more power efficient. Second, a program might need to be ported
simultaneously to different types of motes, as system integrators need various
form factors or performance characteristics.

Handzicki, Polastre et al.[5] address the issue of portability when they de-
signed TinyOS 2.0 Hardware Abstraction Architecture. They defined a general
design principle, that introduces three layers:

1. Mote Hardware: a collection of interconnected hardware components (typi-
cally MCU, flash, sensors, radio).

2. Mote Drivers: Hardware-specific software that exports a hardware indepen-
dent abstraction (e.g., TinyOS 2.0 define such Hardware Independent Layer
for the typical components of a mote).

3. Cross-Platform Programs: the generic data acquisition programs that orga-
nize sampling, storage and communication.

We rely on these three layers to reason about mote performance. Whether
motes are deployed for a limited period of time in the context of a specific
application (e.g., a scientific experiment), or in the context of a permanent in-
frastructure (e.g., within a building), power consumption is the key performance
metric. Motes should support data acquisition programs functionalities within a
limited power budget. We focus on the following questions:

1. What mote hardware to pick for a given program? The problem is to explore
the design space and choose the most appropriate hardware for a given pro-
gram without having to actually benchmark the program on all candidate
platforms.

2. What is a mote hardware good for? The problem is to characterize the type
of program that is well supported by a given mote hardware.

3. Is a driver implemented efficiently on a given hardware? The problem is to
conduct a sanity check to control that a program performs as expected on a
given hardware.

We are facing these questions in the context of the Hogthrob project, where
we design a data acquisition infrastructure. First, because of form factor and cost,
we are considering a System-on-a-Chip (SoC) as mote hardware. Specifically, we
want to investigate whether Sensinode Nano, a mote based on Chipcon’s CC2430
SoC, would be appropriate for our application. More generally, we want to find
out what a CC2430 mote is good for, i.e., what type of applications it supports
or does not support well. Also, we had to rewrite all drivers to TinyOS 2.0
on CC2430, and we should check that our implementation performs as well as
TinyOS 2.0 core. Finally, we would like to use Sensinode Micro as a prototyping
platform for our application as its toolchain is easier and cheaper to use (see



Section 3.2 for details). We would like to run our application on the Micro,
measure performance, and predict the performance we would get with the Nano.

In this paper, we propose a vector-based methodology to study mote perfor-
mance. Our hypothesis is that energy consumption on a mote can be expressed
as the scalar product of two performance vectors, one that characterize the mote
(hardware and drivers), and one that characterize the cross-platform application.
Using this methodology, we can compare motes or applications by comparing
their performance vectors. We can also predict the performance of an applica-
tion on a range of platforms using their performance vectors. This method will
enable sensor network designers answer the questions posed above. Specifically,
our contribution is the following:

1. We adapt the vector-based methodology, initially proposed by Seltzer et
al.[4], to study mote performance in general and TinyOS-based motes in
particular (Section 3).

2. We conduct experiments with two types of motes running TinyOS 2.0:
Sensinode Micro and CC2430. We ported TinyOS to these platforms (see
Section 4).

3. We present the results of our experiments (Section 5). First, we test the
hypothesis underlying our approach. Second, we compare the performance
of the Micro and CC2430 motes using their hardware vectors. Finally, we
predict the performance of generic data acquisition programs from the Micro
to the CC2430.

2 Related Work

Typically, analytical models, simulation or benchmarking are used to study the
performance of a program [3]. In our opinion, simulation is best suited for rea-
soning about the performance and scalability of protocols and algorithms, not to
reason about the performance of an application program on a given mote hard-
ware. Indeed, simulators are best suited when they abstract the details of the
hardware and driver layers. Standard benchmarks fall into two categories: ap-
plication benchmarks (SPEC, TPC), or microbenchmarks (lmbench)2. There is
no such standard benchmark for sensor networks. Micro benchmarks have been
defined for embedded systems (EEMBC), but they focus at the automotive and
consumer electronics markets – they do not tackle wireless networking or sensing
issues.

The vector-based methodology proposed by Setlzer et al.[4] has been used
to characterize the performance of web servers, OS utilities and Java Virtual
Machines. Our paper is the first to propose this methodology in the context of
sensor networks.

Performance estimation is of the essence for real-time embedded systems.
The focus there is on timing analysis, not so much on energy consumption. We
share a same goal of integrating performance estimation into system design [8].

2 See http://www.tpc.org, http://www.spec.org, http://www.bitmover.com/lmbench,
and http://www.eembc.org/ for details about these benchmarks.



In the context of sensor network, our work follows-up on the work of Jan
Beutel that defined metrics for comparing motes[9]. Instead of using data sheets
for comparing mote performance, we propose to conduct application-specific
benchmarks.

Our work is a first step towards defining a cost model for applications running
on motes. Such cost models are needed in architectures such as Tenet [1] or
SwissQM [2] where a gateway decides how much processing motes are responsible
for. Defining such a cost model is future work .

3 Vector-Based Methodology

The vector-based methodology[4], consists in expressing overall system perfor-
mance as the scalar product of two vectors:

1. A system-characterization vector, which we call mote vector and denote
MV . Each component of this vector represents the performance of one prim-
itive operation exported by the system, and is obtained by running an ap-
propriate microbenchmark.

2. An application-characterization vector, which we call application vector

and denote AV . Each component of this vector represents the application’s
utilization of the corresponding system primitives, and is obtained by instru-
menting the API to the system primitive operations.

Our hypothesis is that we can define those vectors such that mote perfor-
mance can be expressed as their scalar product:

Energy = MV · AV

Our challenge is to devise a methodology adapted to mote performance. The
issues are (i) to define the mote vector components, and the microbenchmarks
used to populate them, and (ii) to define a representative application workload,
to collect a trace from the instrumented system API, and to convert an applica-
tion trace into an application vector.

3.1 Mote Vector

We consider a system composed of the mote hardware together with the mote
drivers. The primitive operations exported by such a system are:

– CPU duty cycling: the network embedded programs that mainly sleep and
process events need to turn the CPU on and off3.

– Peripheral units: controlled through the hardware-independent functions
made available at the drivers interface.

3 Note that we assume that the mote hardware relies on a single CPU to control all
peripheral units. Peripheral units such as digital sensors might include their own
micro-controller. Our assumption simply states that a mote program is run on a
single CPU.



We choose this system because its interface is platform-independent. This has
two positive consequences. First, we can use mote vectors to compare two differ-
ent motes. Second, the application vector is platform-independent. We can thus
use our vector-based methodology to predict the performance of an application
across motes.

The mote vector components correspond to the CPU (when active or idle),
and the peripheral units (as determined by the driver interfaces). Throughout the
paper, we use an associative array notation to denote the mote (and application)
vector components, e.g., MV [active] corresponds to CPU execution, MV [idle]
corresponds to CPU sleep, MV [PUi], correspond to peripheral units primitives
where PUi is for example ADC sample, flash read, flash write, flash erase, radio
transmit, radio receive.

We need to define a metric for the vector components. The two candidates
are energy and time. We actually need both: (a) energy to compute the scalar
product with the application vector and thus obtain mote performance, and (b)
time to derive the platform-independent characteristics of an application (see
Section 3.2). We thus need to define a microbenchmark for each mote vector
component for which we measure time elapsed and energy spent. We distinguish
between the energy mote vector, noted MVe, and the time mote vector, noted
MVt.

The microbenchmarks must capture the performance of the system’s primi-
tive operations. The first problem is to represent CPU performance. The most
formidable task for the CPU in a sensor network application is to sleep. This
is why we distinguish sleep mode from executing mode in the mote vector. For
the applications we consider, a single sleep mode is sufficient. Defining a mi-
crobenchmark to define the energy spent in sleep mode is trivial. However, we
wish to use the time mote vector to compare the time spent in sleep mode by
different motes. Intuitively, the time spent in sleep mode is a complement of the
time spent processing. As an approximation, we thus consider that MVt[idle] is
the complement of MVt[active] with respect to an arbitrary time period (fixed
for all mote vectors), and that MVe[CPUsleep] corresponds to the energy spent
in sleep mode during that time.

The second problem is to define an appropriate representation of CPU per-
formance (in executing mode). Unlike peripheral units, for which drivers define
a narrow-interface, the CPU has a rich instruction set. It is non-trivial to es-
timate the CPU resources used by a given application as it depends on the
source code and on the way the compiler leverages the CPU instruction set. We
choose a simple approach where we use a microbenchmark as a yardstick for the
compute-intensive tasks of an application. We thus represent CPU performance
using a single vector component. There is an obvious pitfall with this approach:
we assume that the distribution of instructions used by the microbenchmark is
representative of the instructions used by the application. This is unlikely to be
the case. We use this simple approach, despite its limitation, as a baseline for
our methodology because we do not expect CPU utilization to have a major
impact on energy consumption. Our experiments constitute a first test of this



assumption. Obviously much more tests are needed, and devising a more precise
estimation of CPU utilization is future work.

The third problem related to the microbenchmarks is that driver interfaces
often provide a wide range of parameters that affect their duration and energy
consumption. Instead of attempting to model the complete range of parameters,
we define microbenchmarks that fix a single set of parameters for each peripheral
unit primitive. Each peripheral unit microbenchmark thus corresponds to calling
a system primitive with a fixed set of parameters, e.g., a microbenchmark for
radio transmit will send a packet of fixed length, and a microbenchmark for ADC
sampling will sample once at a fixed resolution. We believe that this models the
behavior of sensor network application that typically use a fixed radio packet
length or a particular ADC resolution. This method can trivially be expanded
by defining a vector component per parameters (e.g., replacing radio transmit
with two components radio transmit at packet length 1 and radio transmit at
packet length 2 ).

For the sake of illustration, let us consider a simplistic mote with a subset
of the TinyOS 2.0 drivers, that only exports two primitives: ADC sample and
radio transmit (tx). The associated time mote vectors will be of the form:

MVt =









active
idle
adc
tx









Where the mote vector components correspond to the time spent by the
mote running the CPU microbenchmark, to the time spent in sleep mode (the
complement of the time spent running the CPU benchmark with respect to an
arbitrary time period that we set to 20 s), to the time spent running the ADC
benchmark, and to the time spent running the transmit benchmark.

In order to express mote performance as the scalar product of the energy
mote vector and the application vector, we need the components of the mote
vectors to be independent. This is an issue here, because CPU is involved when-
ever peripheral units are activated. Our solution is to factor CPU usage in each
peripheral unit component. As a consequence, the mote vector component cor-
responding to CPU performance (active) must be obtained without interference
from the peripheral units. Another consequence is that we need to separate the
CPU utilization associated to peripheral units from the pure computation, when
deriving the platform-independent characteristics of an application. We thus reg-
ister CPU time when benchmarking each peripheral unit primitive. We denote
them as CPU [PUi] for each peripheral unit primitive PUi.

We detail in the next Section, how we use those measurements when deriving
the application vector from a trace.

3.2 Application Vector

Our goal is to characterize how an application utilizes the primitives provided
by the underlying system. The first issue is to define a workload that is repre-



sentative of the application. In the context of sensor networks, workload charac-
terization is complicated (i) because motes interact with the physical world and
(ii) because the network load on a mote depends on its placement with respect
to the gateway, and (iii) because different motes play different roles in the sensor
network (e.g., in a multihop network a mote located near the gateway deals with
more network traffic than a mote located at the periphery of the network).

We consider that a sensor network application can be divided into representa-
tive epochs that are repeated throughout the application lifetime. For example,
the application we consider in the Hogthrob project consists of one data ac-
quisition epoch4, where an accelerometer is sampled at 4 Hz, the samples are
compressed, stored on flash when a page is full, and transmitted to the gateway
when the flash is half-full. While sampling is deterministic, such an epoch is non-
deterministic as compressing, storing or transmitting depends on the data being
collected, and on the transmission conditions. Obviously, tracing an application
throughout several similar epochs will allow us to use statistics to characterize
these non-deterministic variations.

For each epoch, we trace how the application uses the CPU and the periph-
eral units. More precisely the trace records the total time spent by the mote
in each possible mote state, defined by the combination of active mote vector
components (active that represents the compute-intensive operations, idle that
represents the CPU in sleep mode, and PUi that represents a peripheral unit
interface call). We thus represent the trace as a vector, denoted T . T is of di-
mension 2m, where m is the dimension of the mote vector. Some of the mote
states will not be populated because they are mutually exclusive (e.g., active
and idle), or because the driver interfaces prevent a given combination of active
peripheral units.

Let us get back to the simple example we introduced in the previous section.
The trace vector for an epoch will be of the form:

T =

























active
idle
adc
tx
adc & tx

active & adc
active & tx
active & adc & tx

























Now the problem is to transform, for each epoch, the trace vector into a
platform-independent application vector. The application vector, denoted AV ,
has same dimension m as the mote vector, and each application vector compo-
nent corresponds to the utilization of the system resource as modeled in the mote

4 A sensor network deployed for collaborative event detection will typically consist of
two epochs: one where motes are sampling a sensor and looking for a given pattern
in the local signal, and one where motes are communicating once a potential event
has been detected.



vector. The application vector components have no unit, they correspond to the
ratio between the total time a system primitive is used in an epoch, by the time
spent by this system primitive in the appropriate microbenchmark (as recorded
in the time mote vector MVt). Note that if the driver primitive is deterministic,
then the ratio between the total time spent calling this primitive in an epoch
and the microbenchmarking time is equal to the number of times this primitive
has been called. However, drivers typically introduce non-determinism,because
the scheduler is involved or because drivers embed control loops with side effects
(e.g., radio transmission control that results in retransmissions).

We use a linear transformation to map the trace vector onto the application
vector. This transformation can be described in three steps:

1. We use an architecture matrix to map the trace into a vector of dimension
m, the raw total time vector, where each component correspond to the
total utilization of the CPU and peripheral units. The architecture matrix
encodes the definition of each state as the combination of active mote vector
components. Note that this combination depends on the architecture of the
mote. For example, a SPI bus might be shared by the radio and the flash. In
this case, the time spent in a state corresponding to radio transmission and
flash write is spent either transmitting packets or writing on the flash (there
is no overlap between these operations). We assume fair resource arbitration
and consider that both components get half the time recorded in the trace.
In case of overlap between operations, both get the total time recorded in
the trace.
In our simplistic example, assuming that a SPI resource is shared between
the radio and the ADC, the architecture matrix will be of the form:

AM =









1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 0 1 0 1

2 1 0 1
2

0 0 0 1 1
2 0 1 1

2









2. We use a CPU matrix to factor out of the active component the time spent
by the CPU controlling the peripheral units. The CPU matrix, of dimension
m×m, is diagonal except for the column corresponding to the active compo-
nent. This column is defined as 1 on the diagonal, 0 for the idle component,
and −CPU [k]/MV [k] for all other components. When multiplying the total
time vector with the CPU matrix, we obtain a total time vector where the
active component corresponds solely to the compute-intensive portion of the
application.
Using again our running example, we have a CPU matrix of the form:

CPU =











1 0 0 0
0 1 0 0

−
CPU [adc]
MVt[adc] 0 1 0

−
CPU [tx]
MVt[tx] 0 0 1













3. We use the time mote vector to derive the application vector. The basic idea
is to express the application utilization of the system primitive as the ratio
between total time per component, and the time spent running a benchmark.
We define the inverse mote vector, MV −1, as a vector of dimension m where
each component is the inverse of the time mote vector component (this in-
verse is always defined as the time mote vector components are always non
zero). We define the application vector as the Hadamard product of total
time vector with the inverse mote vector.
With our running example, we obtain the equation:









totalactive/MVt[active]
totalidle/MVt[idle]
totaladc/MVt[adc]
totaltx/MVt[tx]









=









totalactive
totalidle
totaladc
totaltx









◦









1/MVt[active]
1/MVt[idle]
1/MVt[adc]
1/MVt[tx]









More generally, we derive the application vector from the trace vector using
the following linear transformation:

AV = (CPU × (AM × T )) ◦ MV −1

And we obtain the mote performance as the scalar product of the application
vector with the energy mote vector:

E = AV · MVe

4 Implementation in TinyOS 2.0

We applied our vector-based methodology to two motes: Sensinode Micro, a
Telos-like mote, and CC2430, which is the basis for a new generation of com-
mercial motes5. We ported TinyOS 2.0 on both platforms.

4.1 CC2430 and Sensinode Micro

As a SoC Chipcon’s CC24306 has a small form factor (7x7 mm) and promises
to be mass-produced at a lower price than complex boards. Motes built around
the CC2430 might constitute an important step towards reducing the price of
sensor networks. The CC2430 is composed of the 8051 MCU with a wide range of
common on-chip peripherals as well as an 802.15.4 radio very similar to the Texas
Instruments CC2420. We run the system at 32 MHz. The CC2430 differs from
the platforms on which TinyOS has been implemented so far in two important
ways: the system architecture and the interconnect to the radio.

The Intel 8051 MCU architecture was designed in the early eighties and many
oddities from the era remain. Not only is it an 8 bit, CISC style processor with a

5 We experimented with a CC2430 development kit. Using commercial systems based
on CC2430, such as Sensinode Nano, is future work.

6 For details, see CC2430 data sheet: http://focus.ti.com/lit/ds/symlink/cc2430.pdf



Harvard architecture7, but the main memory is further subdivided into separate
address spaces that differ in size, are addressed differently and vary in access
time. Simply put, the 8051 defines a fast memory area limited to 256 bytes,
and a slow memory area of 8 KiB. In addition to variables, the fast access area
contains the program stack. This limits the program stack to less than 256 bytes
depending on the amount of variables in this area. Commonly, activation records
of functions are placed on the stack, thus potentially limiting the call depth
critically. To circumvent this problem, the compiler places stack frames in the
slow data area, which imposes a high cost for storing and retrieving arguments
that do not fit in registers when calling a function. The slow access RAM also
penalizes dynamic memory allocation, and context switches and thus favor an
event-based OS with static memory allocation such as TinyOS.

Because CC2430 is a SoC, there is no bus between the MCU and the radio.
The MCU controls the radio via special function registers (instead of relying on
a SPI bus as it is the case on Telos and Micro motes for example). The other
peripheral units (ADC, UART, timers, flash, and pins) are accessed in the 8051
MCU as in other micro-controllers such as the MSP or Atmega.

The Sensinode Micro is built around the 16 bit, RISC style MSP430 MCU
with combined code and memory spaces (Von Neuman). The platform can run
up to 8 MHz, but we choose 1 MHz in our experiments. Apart from the built
in common peripherals of the MSP, it features the Texas Instruments CC2420
radio which is connected though an SPI bus.

4.2 TinyOS 2.0 on CC2430 and Micro

TinyOS 2 has been designed to facilitate the portability of applications across
platforms. First, it is built using the concept of components that use and pro-
vide interfaces. TinyOS is written in nesC, an extension of C that supports
components and their composition. Second, TinyOS implements the Hardware
Abstraction Architecture[5]. For each hardware resource, a driver is organized
in three layers: the Hardware Presentation Layer (HPL) that directly exposes
the functions of the hardware component as simple function calls, the Hard-
ware Abstraction Layer (HAL) that abstracts the raw hardware interface into
a higher-level but still platform dependent abstraction, and the Hardware In-
dependent Layer (HIL) that exports a narrow, platform-independent interface.
The TinyOS 2.0 core working group has defined HIL for the hardware resources
of typical motes: radio, flash, timer, ADC, general IO pins, and UART.

Porting TinyOS 2.0 on CC2430 consisted in implementing these drivers8. For
the timers, pins, UART and ADC we used the TinyOS HIL interfaces, however
for the Radio and Flash diverge from the common interfaces.

Radio We export the radio using a straightforward SimpleMac interface. This
interface is well suited for the 802.15.4 packet-based radios of the CC2430.

7 Code and data are located in separate memory space
8 For details, see http://www.tinyos8051wg.net



It allows to send and receive packets, and set various 802.15.4 parameters as
well as duty cycling the radio. Note that we depart from the Active Message
abstraction promoted by the TinyOS 2.0 core working group. Our SimpleMac
implementation supports simple packet transmission, but does not provide
routing, or retransmission. Implementing Active Messages is future work.

Flash We export the flash using the SimpleFlash interface that allows to read
and write an array of bytes, as well as delete a page from flash. Note that this
interface is much simpler than the abstractions promoted by the TinyOS 2.0
core working group (volumes, logging, large and small objects). We adopted
this simple interface because it fits the needs of our data acquisition appli-
cation. Implementing the core abstractions as defined in TEP103 is future
work.

Timer The timers are exported using the generic TinyOS Timer interfaces
Alarm and Counter. These two interfaces give applications access to hard-
ware counters and allows the use of the TinyOS components to extend the
timer width from 16 bit to 32 bit. Note that on the pre-release CC2430 chips
we used for our experiments, timers do not work properly9.

ADC The Analog-to-Digital Converter is accessed through the core Read in-
terface that allows to read a single value. In order to read multiple values,
an application must issue multiple read calls or use DMA transfers.

Pins The General IO pins are exported through the core GeneralIO interface,
that allows to set or clear a pin, make it an input or an output.

UART The UART is exported using the core SerialByteComm interface (that
sends and receives single bytes from the UART) and StdOut interfaces (that
provides a printf-like abstraction on top of SerialByteComm.

Note that we did not need to change the system components from TinyOS 2.0.
However, supporting a sleep mode on the CC2430 requires implementing a low-
frequency timer. On the pre-release CC2430 chips we used for our experiments,
timers do not work properly. This is work in progress, as a consequence our
experiments are conducted without low-power mode on the CC2430.

The main challenges we faced implementing TinyOS 2.0 drivers on CC2430
were to (i) understand the TEP documents that describe the core interfaces as
we were the first to port TinyOS 2.0 on a platform that was not part of the core,
and (ii) to define an appropriate tool chain. Indeed, the code produced by the
nesC pre-compiler is specific to gcc, which does not support 8051. We had to (a)
choose another C compiler (Keil), and (b) introduce a C-to-C transformation
step to map the C file that nesC outputs into a C file that Keil accepts as
input (e.g., Keil does not support inlining, the definition of interrupt handlers is
different in Keil and gcc, Keil introduces compiler hints that are specific to the
8051 memory model). The details of our toolchain are beyond the scope of this
paper, see [6] for details.

Because the Micro has many similarities with the Telos mote, on which
TinyOS 2.0 was originally developed, porting porting TinyOS 2.0 was a sim-

9 The timers miss events once in a while. This error is documented on a ChipCon
errata, which is not publically available.



ple exercise. However, the wiring of the radio does not feature all of the signals
available on the Telos mote, meaning that the radio stack could not be reused.
We implemented the simple MAC layer, SimpleMac, and simple flash layer Sim-

pleFlash described above.

4.3 Mote Vectors and Benchmarks

The vector component are chosen by analyzing the components used by the ap-
plications. As a result, we choose the following components for their mote vectors:
active, idle, adc, radio receive, radio transmit, flash read, flash write, and
flash erase. Doing so, we leave some of the peripheral unit primitives out of
the mote vector (e.g., the primitives to set or get the channel on the 802.15.4
radio) and unused peripherals. The time spent executing primitives left out are
factored as CPU execution time, while the unused peripherals are only consid-
ered to contribute the idle power consumption. We also leave timers, UART and
general IO pins out of the mote vector. The time spent in the timers is factored
in the CPU idle component. We leave general IO pins out because we do not use
LEDs, or digital sensors. Similarly, we do not use the UART. Note that we do
not consider a specific sensor connected to the ADC.

The benchmarks we defined for these mote vector components are:

– A compression algorithm to characterize CPU execution. This component
contains a mix of integer arithmetic with many loads and stores and some
function calls. Using this algorithm is a baseline approach.

– Simple function calls with a fixed parameter for each peripheral unit primi-
tive10. Note that benchmarks, in particular for the radio and flash, contain
some buffer manipulation. These are measured as CPU [PUi] (see Section
2.1).

4.4 TinyOS API Instrumentation

We need to implement the CPU and peripheral units to collect the traces that are
the basis for the application vectors. We implemented the following mechanisms:

– For the peripheral units, we introduce a platform-independent layer between
the component that provides the driver interface and the component that
uses it. As an example consider reading a value from the ADC using the
TinyOS 2.0 Read interface. This interface starts an ADC conversion with a
Read command and returns with a readDone, We insert a layer that records
the time elapsed between the Read command is called and the readDone

event is received. This is obviously an approximation of the time during
which the ADC is actually turned on.

– For the CPU, we leverage the fact that TinyOS has a simple task scheduler
that puts the CPU into sleep mode when the task queue is empty. The
microprocessor is awoken via interrupts generated from internal or external

10 The source code is available through the TinyOS 2 contribution section



peripherals. We record the time elapsed between the CPU enters sleep mode
and the woke-up interrupt handler is executed as idle and the rest of the
time as active.

In order to collect this trace, we encode each state as a combination of bits
(our mote vector is of dimension 8) we thus use 8 bits to encode the states.
Collecting this trace could be done internally on the mote being investigated, but
this introduces a management overhead. Instead we output each bit of the state
as an IO pin, using a second mote, which we call LogRecorder, that records the
state transitions. This mechanism is very similar to the monitoring techniques
devised for deployment-support networks[7].

4.5 Data Acquisition Applications

We use simple data acquisition applications as workload for our experiments. We
build them from building blocks: sample, compress, store, and send. We create
4 applications that increase the parallel behavior of these tasks from isolation to
parallel sample and transmission:

SampleCompressStore is a simple state machine, that runs each step in isola-
tion. As each sample is retrieved, it is then compressed, and once 10 samples
are retrieved they are stored to flash. This cycle is repeated 9 times.

DataAcquisition extends the state machine from SampleCompressStore to re-
trieve the data from flash and transmit it. Again, each step in isolation.

SampleStoreForward is similar to DataAcquisition, except without the com-
pression step.

DataAcquisitionAdv performs the same tasks as DataAcquisition, but inter-
leaves the sample and transmit processes. Store is done in isolation.

For our first experiments, we want a deterministic workload that exhibits
reproducible results. One important source of variance in a sensor network ap-
plications is the environment. We choose a simple network topology and trans-
mission scheme. Data is transmitted in 384 byte chunks (data and padding).
The transmission does not expect acknowledgment that a packet is received, but
only wait for the channel to be cleared (CCA) before sending. Sampling is at
10Hz and for compression we use the Lz77 algorithm.

5 Experimental Results

5.1 CC2430 and Micro

We ran the benchmarks described in the previous section on both the Micro
and CC2430 motes. The time and energy mote vectors we obtain are shown in
Figure 1 as spider charts. The results are somewhat surprising. CC2430 is much
faster than the Micro when running the benchmarks and transmitting packets.
Slow memory accesses is compensated by the high clock rate and direct access to



CPU

0

300

600

900

TX

0

4

8

12

Read

0

1

Write

0

200

400

600

800

Delete

0

200

400

600

800

Sample

0

CC2430

Micro4

(a) Time Mote Vectors

CPU

0

100,000

200,000

300,000

TX

0

100

200

300

400

Read

0

Write

0

500

1,000

Delete

0

1,500

3,000

Sample

0

5

10

15

CC2430

Micro4

(b) Energy Mote Vectors

Fig. 1. Time and energy mote vectors for CC2430 and Micro

the radio speeds up packet transmission. It means that the CC2430 can complete
its tasks quickly, and thus be aggressively duty cycled. In terms of energy, we
observe that:

1. CPU operations are two to three orders of magnitude more expensive on
the CC2430 than on the Micro. This is due to the high clock rate (which
guarantees fast execution) and to the overhead introduced by the slow access
RAM.

2. Flash operations are much more expensive on the Micro than on the CC2430.
These results led us to check our driver implementation (which is a positive
results in itself). We could not find any bug. We believe that the difference
in performance can be explained by the difference in clock rate between both
platforms (1 MHz for the Micro vs. 32 MHz for the CC2430) and with the
fact that the CC2430 driver is hand coded in assembler and the Micro’s is
not.

5.2 Performance Prediction

We used our methodology to derive the application vectors for the four data
acquisition applications described in the previous Section. The results are shown
in Figure 2.

The profiles we get for the applications correspond to what we expect. Indeed,
the application vector components for the ADC, flash and radio operations corre-
spond roughly to the number of samples, flash and radio operations issued by the
applications. The application vector is designed to be platform-independent. We
thus expect that the application vectors derived from the CC2430 and Micro are
similar. The good news is that they are at the exception of the ADC component.
This is either a measurement error, a software bug in the driver, or a hardware
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bug. We focused on this issue and observed that the time it takes to obtain a
sample on CC2430 varies depending on the application. Two different programs
collecting the same data through the same ADC driver experience different sam-
pling times. We observed as much as 50% difference between two programs. We
believe that this is another hardware approximation on the CC2430.
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Fig. 3. Energy measurements and estimates

Our initial hypothesis is that the energy spent by an application on a mote
can be estimated using the scalar product of the application vector with the mote
vector. We computed the energy estimate for the DataAcquisitionAdv application
and we compared them to the measurements we conducted directly on the motes
(using an oscilloscope). The results are shown in Figure 3.

The estimations are well into an order of magnitude from the actual energy
consumption. This is rather positive. As expected, the contribution from the
CPU in active mode is insignificant. The poor performance of the CC2430 is
due to the fact that we did not implement sleep mode support on the CC2430.
Much more work is needed to test our methodology. This experiment, however,



shows that we can use our method to prototype a data acquisition application
with the Micro and predict how much energy the CC2430 would have used in
the same conditions.

6 Conclusion

We described a vector-based methodology to characterize the performance of an
application running on a given mote. Our approach is based on the hypothesis
that mote energy consumption can be expressed as the scalar product of two vec-
tors: one that characterize the performance of the core mote primitives, and one
that characterizes the way an application utilizes these primitives. Our experi-
ments show that our methodology can be used for predicting the performance
of data acquisition applications between Sensinode Micro and a mote based on
the CC2430 SoC. Much more experimental work is needed to establish the lim-
its of our approach. Future work includes the instrumentation of an application
deployed in the field in the context of the Snowths project, and the development
of a cost model that a gateway can use to decide on how much processing should
be pushed to a mote.
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